Una teoría generalizada de señales y sistemas
A generalized signals and systems theory
Emilio Gago Ribas, Juan Heredia Juesas y José Luis Ganoza Quintana
Área de Teoría de la Señal y Comunicaciones, Universidad de Oviedo, Edificio Polivalente de Viesques, 33203, Gijón – España
DOI: https://doi.org/10.33017/RevECIPeru2014.0015/
Resumen
La Teoría de Señales y Sistemas Teoría (SST) desempeña un papel fundamental en la formación académica y profesional en diferentes áreas de la ingeniería eléctrica (procesado de la señal, electromagnetismo, acústica, mecánica cuántica, etc.), así como en muchas otras áreas científicas. Muchos autores presentan esta teoría siguiendo un esquema que es válido para el análisis práctico de muchos sistemas siguiendo el esquema habitual de la SST. Esta forma de presentar dicha teoría suele evitar tener que tratar con conceptos más generales que son fundamentales en las explicaciones asociadas con la resolución de un gran número de problemas físicos. Estas limitaciones suelen estar relacionadas con la interpretación matemática y física de muchos conceptos importantes inherentes a la SST, por ejemplo, (i) la definición de funciones generalizadas, como la delta de Dirac o sus derivadas, sin considerar el rigor matemático de la teoría de distribuciones, (ii) el análisis de sistemas lineales invariantes en los dominios tiempo-frecuencia mediante la realización del análisis espectral bajo la transformada de Fourier solamente, (iii) el análisis de problemas en variable continua y discreta por separado, (iv) el hecho de no considerar el análisis de sistemas lineales no invariantes de una manera rigurosa, etc. Estas simplificaciones dejan de lado muchos problemas importantes que deberían ser analizados bajo la SST. Esto es particularmente importante si el análisis se centra en los problemas físicos (generalmente definidos por ecuaciones diferenciales más ciertas condiciones de contorno) bajo la SST, por ejemplo: (i) los problemas en el dominio espacial, que a menudo son lineales no invariantes, (ii) el análisis en el dominio del tiempo de los sistemas lineales no invariantes (modulador de amplitud, por ejemplo), (iii) el análisis espectral bajo otras transformadas, en relación con las representaciones habituales utilizando diferentes funciones de onda como funciones de base (ondas cilíndricas, ondas esféricas, haces gaussianos, haces complejos, wavelets, etc.), (iv) el análisis de la teoría de funciones de Green como un caso particular de la SST, (v) la consideración de la teoría de las distribuciones junto con las funciones ordinarias a través de la teoría de los espacios de Hilbert equipados (RHS), (vi) la extensión de la SST a las funciones de variable compleja con el fin de entender la continuación de coordenadas reales a coordenadas complejas, o (vii) la generalización del análisis de los operadores no lineales, así como muchos otros tipos de problemas. El objetivo final del trabajo presentado en este artículo es desarrollar una teoría general que puede incluir todos estos casos de una manera rigurosa. Esto conduce a una Teoría Generalizada de Señales y Sistemas (GSST) que se ha construido teniendo en cuenta que cualquier problema físico pueda analizarse particularizando los conceptos generales de esta teoría con los parámetros concretos del problema en cuestión. Este esquema se revisa continuamente y se actualiza con nuevos resultados. En este artículo se presentará una versión actualizada de este esquema, versión que es usada hoy en día para la presentación de la SST tanto para estudiantes de grado (en una versión simplificada) como para estudiantes de postgrado. El esquema de la GSST está construido considerando inicialmente espacios vectoriales de señales de dimensión finita e infinita junto con la teoría de los operadores y de la teoría de distribuciones, considerando variables generales que pueden representar cualquier magnitud física (tiempo, espacio, etc.) Con estas consideraciones iniciales en mente, se introducirán varios conceptos generalizados importantes, tales como la Combinación Lineal Generalizada (LC), la Transformada Generalizada (GT), los Cambios Generalizados de Transformadas (GTC) y el Análisis Espectral Generalizado (GSA) de sistemas lineales (invariantes y no invariantes).
Descriptores: señales, sistemas, distribuciones, transformadas generalizadas, análisis espectral generalizado
Abstract
The Signals and Systems Theory (SST) plays a fundamental role in the academic and professional background in different areas of electrical engineering (signal processing, electromagnetics, acoustics, quantum mechanics, etc.) as well as in many other scientific areas. Many authors present this theory following a scheme which is valid for the practical analysis of many systems following the usual scheme of the SST, for instance. This way of presenting this theory usually avoids dealing with more general concepts that are fundamental in the explanations associated with the resolution of a large number of physical problems. These limitations use to be related to the mathematical and physical interpretation of many important concepts underlying the SST, for instance (i) the definition of generalized functions such as the Dirac delta or its derivatives without considering the mathematical rigor of the theory of distributions, (ii) the analysis of linear invariant system in the timefrequency domain by performing spectral analysis under the Fourier transform only, (iii) the analysis of continuous and discrete variable problems separately, (iv) the lack of considering the analysis of linear non invariant systems in a rigorous way, etc. These simplifications leave out many important problems that should be analyzed under the SST. This is particularly important if the analysis focuses on physical problems (usually defined by differential equations plus some boundary conditions) under the SST, for instance: (i) problems in the spatial domain, which are often linear non invariant, (ii) the analysis in the time domain of linear non-invariant systems (amplitude modulator, for instance), (iii) the spectral analysis under other transforms, in connection with the usual representations using different wave functions as base functions (cylindrical waves, spherical waves, Gaussian beams, complex beams, wavelets, etc.), (iv) the analysis of the Green’s functions theory as a particular case of the SST, (v) the consideration of the theory of distributions together with the ordinary functions through the theory of rigged Hilbert spaces (RHS), (vi) the extension of the usual SST to complex variable functions in order to understand the continuation of real coordinates to complex ones, or (vii) the generalization of the analysis of nonlinear operators, as well as many other types of problems. The final aim of the work presented in this paper is to develop a general theory which can include all of these cases in a rigorous way. This leads to a Generalized Signals and Systems Theory (GSST) that has been built keeping in mind that any physical problem may be analyzed particularizing the general concepts of this theory to the concrete parameters of the problem at hand. This scheme is continuously revised and updated with new results. The up-to-date version of this scheme will be presented in this paper and it is used nowadays for presenting the SST to both undergraduates (in a simplified version) and postgraduate students. The GSST scheme is built under finite or infinite dimension signal vector spaces together with the theory of operators and the theory of distributions, considering general variables that may represent any physical magnitude (time, space, etc.). With these initial considerations in mind, several generalized important concepts will be introduced, such as the Generalized Linear Combination (LC), the Generalized Transform (GT), the Generalized Transform Changes (GTC) and the Generalized Spectral Analysis (GSA) of linear (invariant and non-invariant) systems.
Keywords: signals, systems, distributions, generalized transforms, generalized spectral analysis.